Dot Plot for Over-Representation Analysis (ORA) Results
dotplot_ORA.Rd
This function creates a dot plot for ORA results, with options to color the dots by enrichment score or significance and to facet by a specified variable.
Arguments
- ORA_res
A data frame containing the ORA results from either filtered results in output of
Run_bootstrap_ORA
or direct output ofRun_simple_ORA
.- alpha_cutoff
A numeric value specifying the alpha cutoff for significance. Default is 0.05.
- color_by
A character string indicating whether to color the dots by "Enrichment_score" or "Significance"
- facet_by
An optional character string specifying a column name by which to facet the plot.
Details
The function creates a dot plot where the size of the dots represents the size of the term (e.g., number of true positives), and the color represents either the enrichment score or the significance (-log10 of the p-value). If multiple conditions are present, the plot is adjusted accordingly. The plot can also be faceted by a specified variable.
Examples
if (FALSE) { # \dontrun{
data("example_ORA_obj")
data("example_ORA_custom_universe")
input_scm = example_ORA_obj$scmatrix
conds = example_ORA_obj$conditions
cond_x = "U"
cond_y = "F"
ORA_obj <- initEnrichment(
scmatrix = input_scm,
conditions = conds,
enrichment_type = "ORA",
annot_db = "HMDB",
consider_isomers = TRUE,
consider_isobars = TRUE,
polarization_mode = "positive",
background_type = "sub_class",
molecule_type = "Metabo",
condition.x = cond_x,
condition.y = cond_y
)
ORA_res <- Run_enrichment(
object = ORA_obj,
custom_universe = example_ORA_custom_universe,
report_ambiguity_scores = TRUE,
DE_LFC_cutoff = 0,
min.pct.diff = 0
)
multi_cond_res = collapse_ORA_boot_multi_cond(ORA_boot_res_list = ORA_res)
p = dotplot_ORA(ORA_res = multi_cond_res$clean_enrich_res)
} # }