Run Metabolite/Lipids enrichment analysis for single cell metabolomics
Run_enrichment.Rd
Run_enrichment() A wrapper to run either ORA or MSEA based on the initialized enrichment object
Usage
Run_enrichment(
object,
Run_DE = FALSE,
DE_pval_cutoff = 0.05,
DE_LFC_cutoff = 1,
min.pct.diff = 0.1,
...
)
Arguments
- object
A numeric matrix of n metabolites (rows) and m cells or measurments (columns).
- Run_DE
A logical indicating whether to run differential analysis using limma's rank Sum Test With Correlation. Ignored if enrichment type is 'MSEA'.
- DE_pval_cutoff
A numeric indicating p-value cutoff. Default is 0.05.
- DE_LFC_cutoff
A numeric indicating the minimum log2 fold change for differential analysis
- min.pct.diff
A numeric indicating the minimum percentage difference between samples/cells in both conditions for a marker to be considered differentially abundant.
- ...
Additional arguments passed to functions used internally, such as
Run_bootstrap_ORA
,Run_simple_ORA
,Run_bootstrap_MSEA
, andRun_simple_MSEA
. Consult the specific function documentation for details on these arguments.
Examples
if (FALSE) { # \dontrun{
data("example_ORA_obj")
data("example_ORA_custom_universe")
input_scm = example_ORA_obj$scmatrix
conds = example_ORA_obj$conditions
cond_x = "U"
cond_y = "F"
ORA_obj <- initEnrichment(
scmatrix = input_scm,
conditions = conds,
enrichment_type = "ORA",
annot_db = "HMDB",
consider_isomers = TRUE,
consider_isobars = TRUE,
polarization_mode = "positive",
background_type = "sub_class",
molecule_type = "Metabo",
condition.x = cond_x,
condition.y = cond_y
)
ORA_res <- Run_enrichment(
object = ORA_obj,
custom_universe = example_ORA_custom_universe,
report_ambiguity_scores = TRUE,
DE_LFC_cutoff = 0,
min.pct.diff = 0
)
} # }