Example Multi condition MSEA results
example_MSEA_multicond.Rd
The example_MSEA_multicond
dataset is a data frame that contains results of running Run_bootstrap_MSEA
on multiple pairwise conditions compared to same reference.
Usage
data(example_MSEA_multicond)
Format
A data frame with 100 rows and 9 variables:
- Term
Character: Term name of metabolite set (e.g. Triacylglycerols)
- n
Numeric: Median term/query overlap size over bootstraps.
- ES_median
Numeric: Median of NES (normalized enrichment score) for fgsea or ES for ks_signed
- ES_sd
Numeric: stadndard deviation of NES (normalized enrichment score) for fgsea or ES for ks_signed
- p.value_combined
Numeric: Combined p-value using
metap::sumlog
- q.value_combined
Numeric: Combined adjusted p-value using
metap::sumlog
- fraction.bootstrap.presence
Numeric: Proportion of bootstraps the given term was tested
- condition.x
Character: Reference condition
- condition.y
Character: Query condition
Examples
# Load the example data frame
data(example_MSEA_multicond)
# View the first few rows
head(example_MSEA_multicond)
#> # A tibble: 6 × 9
#> Term n ES_median ES_sd p.value_combined q.value_combined
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Triacylglycerols 17 1.82 0.0302 1.39e-53 2.00e-39
#> 2 Glycerophosphocholin… 18 -2.41 0.230 4.93e-54 4.38e-39
#> 3 Diradylglycerols 6 1.50 0.0737 3.31e-22 4.83e-19
#> 4 Glycerophosphoethano… 7 -1.36 0.186 5.70e-12 2.13e-11
#> 5 Triacylglycerols 10 2.19 0.0280 5.07e-84 8.31e-60
#> 6 Diradylglycerols 6 1.76 0.128 1.84e-50 3.07e-39
#> # ℹ 3 more variables: fraction.bootstrap.presence <dbl>, condition.x <chr>,
#> # condition.y <chr>